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Notes

This notes come from the Data Structures and Algorithims (EDA) course from Informatic Engineering
at FIB, UPC during the Fall 2024 semester.

1 Introduction

Definition 1.1. A decisional problem Π is a computational problem which for every possible input
x it is determined if a certain property is satisfied by x.
A non decisional problem is a computational problem where for each input x, the output is not
binary (0 or 1).

Example 1.1.1.

� Π ≡ Is G a Hamiltonian graph

� Π ≡ Is it possible to colour G with k colours

Proposition 1.1. It is often easy to transform non decisional problems to decisional problems
Let a non decisional problem Γ ≡ Find the shortest Hamiltonian cycle in a weighted graph G
Let a decisional problem Π ≡ Is there a Hamiltonian cycle in a weighted graph G of weight ≤ W
Binary search can be used to solve Γ from Π by changing W , where the cost of solving Γ equals the
cost of solving Π multiplied by O((size of input))

Definition 1.2. An input set E of a decisional problem Π is a set of binary strings encoding correct
inputs of the problem. E ⊆ (0 + 1)∗ = {λ, 0, 1, 00, 01, 10, . . . }

Definition 1.3. A set P of positive instances of a decisional problem Π is the set

P = {x ∈ E | x satisfies the property Π}

Note: this definition mixes the concept of decisional problem and property, by referring at Π as a
property. This is intentional. In general, there is no difference between the decisional problem and
the property. Furthermore, the set P will also be used to reference a decisional problem, as it is the
set of all objects that hold the property Π.

Definition 1.4. A computational class C is a set of decisional problems (in the set form). That is,
a set of sets of positive instances of decisional problems.
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Lemma 1.1. There exists some decisional problem P that can not be solved by any finite computational
algorithm in finite time.

Proof. We first start by showing that the set of all finite programs (also called, Turing machines)
has cardinality ℵ0 (same as |N|).
This is easy to show. Since any finite program can be represented as a finite string of 1’s and 0’s,
and there exists a bijection between this type of string and the natural numbers (for instance, the
binary representation of the string), we get that there are countably infinite different finite programs.

From definitions 1.2 and 1.3 we know that for a decisional problem P

P ⊆ (0 + 1)∗

Or, in other words
P ∈ P ((0 + 1)∗)

And the cardinality of the set P ((0 + 1)∗) is c, or, the cardinality of the reals |R|. Because any
Turing machine can only decide (or solve) one decisional problem, by Cantor’s Theorem we know
that there must exist a decisional problem that no Turing machine can solve.

Definition 1.5. An alphabet A is a set whose elements are called letters/symbols.
A sequence x of size n is an n-tuple x = (a1, . . . , an) ∈ An

An input set E is a subset of some alphabet A, for instance A = {0, 1} Giving the mentioned before
expression E ⊆ {0, 1}∗ where A∗ is the set of every possible sequence of finite size using the symbols
of A
The size of x is denoted by |x|

Corollary 1.1. All subsets of A∗ for an alphabet A are totally ordered sets. This means that for
s1, s2 ∈ A∗ there exists a binary relation ≤ which can be used to order the elements of A∗, for
example s1 ≤ s2 or s2 ≤ s1.

2 Decidability

Definition 2.1. Given a decisional problem P , a (deterministic) algorithm A can be thought as
the aplication

A : E −→ {0, 1}

x 7−→
{

1 : x ∈ P
0 : x ̸∈ P

Definition 2.2. A decisional problem P with input set E is decidable in time f : N → N iff there
exists an algorithm A ∀x ∈ E cost of A(x) ∈ O(f(|x|))

Definition 2.3. Given an application f , the class TIME(f) is the set of all decisional problems P
which are decidable in time f

TIME(f) = {P | P decidable in time f}

Definition 2.4. The class P is the class of all decisional problems decidable in polynomial time.
Defined as

P =
⋃
k≥0

TIME
(
nk

)
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Definition 2.5. The class EXP is the class of all decisional problems decidable in exponential time.
Defined as

EXP =
⋃
k≥0

TIME
(
2[n

k]
)

Corollary 2.1.
TIME(n!) ⊊ TIME(nn) ⊊ EXP

cn
k ⊊ EXP

Theorem 2.1. P ⊊ EXP

3 Nondeterminism

A non deterministic decidable algorithm is an algorithm where multiple paths are considered at
once. Let E be the input set of the decisional problem of such algorithm. Given the input x ∈ E,
each fork is made by a CHOOSE(y) function, which takes y ∈ {0, 1}∗, and returns a z in the same
set, satisfying that λ ≤ z ≤ y ≤ x∗. For this multiple paths, if there exists one that would make the
algorithm return True then the algorithm evaluates to 1. It does to 0 otherwise. x∗ is not necessarily
x, as x lives in the E space. However, it is something related (whatever it is programmed). The core
idea of non deterministic algorithms is that they verify if a given input is a solution. For example,
a non deterministic algorithm to calculate if a given number is not prime would return true if in
one of the paths, the CHOOSE(y) function returns a divisor of such number. The algorithm only
verifies that the output of CHOOSE(y) is a divisor of x or not.

On the other hand, a deterministic decidable algorithm doesn’t use such function and there are no
forks, the graph of states is a single path.

Definition 3.1. Lat A = {0, 1} be the binary alphabet. A decisional problem P with input set E
is decidable in non deterministic polynomial time iff ∃k ∈ N, exists a deterministic polynomial time
algorithm1, called verifier V : E × A∗ → {0, 1} such that ∀x ∈ E:

x ∈ P ⇒ ∃c ∈ A∗ |c| ≤ |x|k V (x, c) = 1

x ̸∈ P ⇒ ∀c ∈ A∗ s.t. |c| ≤ |x|k V (x, c) = 0

c is called a certificate/witness that proves the problem.

What this definition is saying is that, to show that a decisional problem P with input set E can
be solved in nondeterministic polynomial time, all positive inputs x ∈ P must have some certifier y
satisfying |y| ≤ |x|k for some fixed k ∈ N. Then, the verifier V algorithm must check in polynomial
time weather if x ∈ P for all x ∈ E provided the certifier y.

In some sense, the function CHOOSE(y) represents a part (or all) of the certifier c, but it is not
included in the formal definition.

Definition 3.2. The class NP is the class of all decisional problems decidable in nondeterministic
polynomial time.

Theorem 3.1. P ⊆ NP

Proof. Given a decidable problem P in deterministic polynomial time (P ∈ P), with algorithm A
and input set E. A verifier function V can be constructed such that V (x, y) = A(x) ∀x, y ∈ E.
Then, all values y are trivial certifiers of each x ∈ P . Which means that P ⊆ NP.

1Which means, V (x, y) can be decidable in time p(|x|+ |y|) for some polynomial p(n).
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4 Reductions

A reduction is a concept involving 2 decisional problems and one function.

Definition 4.1. Let A,B be 2 decisional problems (note, nothing is specified if those problems live
in P, NP or wherever class) whose input spaces are E and E′. Let f be an application f : E → E′

which computes in polynomial time. Let ≤p be a binary relation between A and B, which, for
instance A ≤p B reads as: A reduces to B in polynomial time.

A ≤p B ⇐⇒ ∃f ∈ O(nk)s.t.

x ∈ A ⇔ f(x) ∈ B

for some k ∈ N, and for n be the size of the input element in E.

What this is saying is that, given 2 decisional problems A,B, A ≤p B means that it is possible to
solve A via B. The way of doing so is to get every input of A, transform it to an input of B, via
function f and apply that input to solve B. Then, that binary output is the same as for the original
A input. An equivalent definition would be:
Let A,B be algorithms for decisional problems A,B with input spaces E,E′:

A ≤p B via f ⇐⇒ ∀e ∈ E A(e) = B(f(e))

One can view reductions as saying A ≤p B means that A is not harder than B because you can
solve A through B adding polynomial time.

Theorem 4.1.

� ≤p is a preorder (it holds ∀A A ≤p A and ∀B,C A ≤p B,B ≤p C ⇒ A ≤p C)

� For C ∈ {P,NP}, ≤p is closed downwards which means that A ≤p B,B ∈ C ⇒ A ∈ C
What this states is that, since A is not harder than B you can solve A at least at the complexity
of B in this classes.

Definition 4.2. The class NP-hard is the class of all decisional problems that NP problems can be
solved through them. That is:

NP-hard = {A | ∀P ∈ NP P ≤p A}

Or, in other words, A is NP-hard if NP is a subset (may or not be proper) of all problems that can
be solved through2 A. That is: all NP problems reduce to A in polynomial time.

Note that for A ∈ NP-hard doesn’t imply that A ∈ NP. If this is also true, then A belongs to the
NPC class.

Definition 4.3. The class NPC, or NP-complete is the class of all decisional problems that are both
NP-hard problems and NP problems. That is:

P ∈ NPC ⇔ {A |A ≤p P } = NP

Corollary 4.1. The following equivalencies hold:

� X ∈ NPC

2in polynomial time
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� X ∈ NP, X ∈ NP-hard

� {A|A ≤p X} = NP

The proof of the later proposition is:

Proof.
X ∈ NPC ⇒ X ∈ NP, X ∈ NP-hard

Applying the definition of NP-hard:

NP ⊆ {A|A ≤p X}

Since X is in NP, applying theorem 4.1 (closure under NP):

A ≤p X ∈ NP ⇒ A ∈ NP

Thus:
NP = {A|A ≤p X}

Corollary 4.2. To prove that X is NP-hard it is sufficient to find a reduction of the type

A ≤p X,A ∈ NP-hard

Proof. A is NP-hard, so all NP problems reduce to A. Since A ≤p X, by transitivity all NP problems
reduce to X so X is NP-hard.

To prove that X is in P or NP, the inverse reduction (from X to a P or NP problem) must be found.
This works because of closure under P and NP.

5 SAT and other problems

The satisfiability problem is a well know NPC problem. The algorithm must decide if a prepositional
formula is satisfiable or not.

Definition 5.1. A propositional formula ϕ is an expression involving parentheses, the constants
true and false, Boolean variables x0, . . . , xn which might take values true or false, their negations
x̄ and the connectives lor (or, disjunction) and ∧ (and, conjunction).

Definition 5.2. For a propositional formula ϕ to be satisfiable means that ∃x = (x0, . . . , xn) ∈
{true, false}n such that ϕ(x) = true. That means that depending of the boolean variables, ϕ can
be a true.

Theorem 5.1 (Cook-Levin’s Theorem (1971)). The SAT problem is NPC.

Proof. SAT ∈ NP because for a specific set of values of the boolean variables of a propositional
formula, it can be checked in polynomial time the overall result.

Let’s now prove that SAT is NP-Hard. That means, all NP problems reduce to SAT. Let B ∈ NP.
This means that ∀x ∈ B there exists a witness y of polynomial size of |x| and a polynomial time
verifier V (x, y), such that, when y is a witness for input x, V (x, y) = 1. Now, for a specific x, we
can construct the algorithm Vx(y) = V (x, y). This Vx runs on hardware, that is: logic gates, logic
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1’s and 0’s. So there exists an intrinsic propositional formula, denoted FVx that solves Vx for any y.
Since y ∈ {0, 1}∗, y can be represented with 1’s and 0’s. In our case, each 1 and 0 will be the boolean
variables of FVx

. The construction and size of this FVx
is polynomial, but it won’t be proved. Let

gV (x) = FVx
be the reduction function that takes input x and transforms into an input for SAT ,

our FVx
. If FVx

is satisfiable it means that a set of variables evaluate the expression to true. Those
variables represent a witness y. This means that B ≤p SAT via gV . So SAT is NP-hard.

5.1 Other problems

Name Class Description

Clique NPC G graph contains a complete subgraph of order k.
Hamiltonian NPC G graph is Hamiltonian.
Independent set NPC G graph contains k vertices which aren’t connected one to

another.
VC: Vertex Cover NPC G graph contains k vertices so that every edge is incident to at

least one of them.
k > 2-Colourability NPC G graph can be coloured by k colors such that 2 connected

vertices don’t have the same colour.
2-Colourability P G graph can be coloured by 2 colors such that 2 connected

vertices don’t have the same colour. Same as, if graph is
bipartite.

Bin-packing NPC Items with sizes d1 . . . dn and k bins of capacity m. All items to
be packed into the bins at the same time.

Tripartite-matching NPC 3 disjoint sets C1, C2, C3 with n elements each and a subset S ⊆
C1 × C2 × C3. S contains n 3-tuples s.t. all elements of the 3
sets are present.

Dominating set NPC G graph with W ⊆ V vertices, k = |W | s.t. ∀v ∈ V \W ∃w ∈
Wv ∼ w.
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